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A comparison of Frequency Map Analyses from Lifetrac simulations with a theoretical derivation
of the amplitude dependent tune for the McMillan electron lens is demonstrated. This includes a
derivation for the physical relationships from the unit-less theory. The paper concludes with a look
at where the theory breaks down and how the simulations behave under such conditions.
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I. INTRODUCTION

As circular accelerators reach higher intensities, collective instabilities become a design limitation. Col-
lective instabilities come from the interaction between the beam and the surrounding environment through
effects such as wakefields and impedance. One way to reduce these instabilities is Landau damping, an ef-
fect of having a distribution of betatron tunes. To improve Landau damping by increasing the range of tunes
in an accelerator, a non-linear force is needed. Traditionally, octupole magnets are used to create a spread
of tunes dependent on the particle’s amplitude. However, octupoles and other non-linear elements can have
a significant drawback, they are unintegrable. Therefore, particles in these systems do not orbit on a closed
loop and can be subject to chaotic motion. For octupoles and sextuples, the chaotic motion occurs after
a certain amplitude, at which point particles are most likely lost. This amplitude limitation, the dynamic
aperture, is a tradeoff with the limitation from collective instabilities. Fortunately, not all non-linear forces
are unintegrable. The Integrable Optics Test Accelerator (IOTA) at Fermilab was designed specifically to
look at novel, integrable, non-linear devices [1].

The McMillan Electron Lens is one such proposed technique. Identified by McMillan in [2], he found a
thin nonlinear kick that could be inserted into a linear lattice which would remain integrable:

f (r) =
kr

r2

a2 + 1
(1)

The parameter k determines the strength of the kick and the parameter a determines its shape. Inegrabil-
ity also requires a 0.25 phase advance between each kick. In this paper, we compare theoretical predictions
for the tune shift cause by the McMillan lens with simulations of the lens using Lifetrac [3].

II. FREQUENCY MAP ANALYSIS

The simulation tool Lifetrac was used to simulate the IOTA ring with the McMillan lens. The IOTA ring
was specified with a 0.25 2p phase advance. The twiss b for the lens location was specified to be 300cm.
The lens was implemented by adding a kick function to the momentum of the form of eq. 1 but for two
dimensions:

fx =
kx

r2

a2 + 1
and fy =

ky
r2

a2 + 1
(2)

Where r =
p

x2 + y2. The tune shift caused by the kick was found by using a Frequency Map Analysis
(FMA) [4]. This allowed for seeing how the tune varied as a function of a particle’s initial amplitude. While
the McMillan lens has it’s own integral of motion such that this amplitude is not constant, results in this
paper will be in terms of the initial amplitude based on the traditional twiss parameters. Figure 1 shows
the results from two different scans with different k strengths. Both simulations start particles with zero
phase. The diagonal line shows the amplitudes where the particles have x = y and x′ = y′. This is important
as the theoretical analysis is only for one dimension while these results are for two dimensions. In order
to compare directly, it in necessary to pick these particles as their motion reduces to one dimension in the
McMillan symmetry.
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FIG. 1. The horizontal tunes of different starting amplitudes for two different values for k. In both plots a = 0:2cm
and b = 300cm. The left plot has a k of 0.005382cm−1 and the right 0.01076cm−1. The diagonal line shows the
particles whose motion reduces to a one dimensional case.

III. THEORETICAL TUNE ANALYSIS

The tune shift caused by the McMillan lens was analyzed analytically in [5]. This theoretical treatment
predicts the tune of a particle from its new constant of motion. The mapping used in the study has the
following form in unitless parameters:

"
q
p

#
=

"
p0

−q0 + mp0
np2

0+1

#
(3)

In this mapping, the 0.25 phase advance is included. This gives a new constant of motion defined as:

I(q; p) = nq2 p2 + q2 + p2−mqp (4)

From this constant, the new tune with the McMillan kick can be calculated by:

n(I) =
1

4K(w)
arcds((d(I)2 + 4nI);w) (5)

Where K(w) is the complete elliptic integral of the first kind, arcds(x;w) is defined as:

arcds(x;w) =
Z

∞

x

dtp
(t2 + w2)(t2 + w2−1)

(6)

w is defines as:

w(I) =
1√
2

s
1 +

d(I)p
d(I)2 + 4nI

(7)
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and d(I) is defined as:

d(I) =
m2

4
+ nI−1 (8)

In order to compare this to the results of Lifetrac simulations, the theoretical phase space needs to be
converted to a real one.

IV. PHYSICAL PARAMETERS DERIVATION

To relate this to a simulation with physical parameters, the kick needs to be separated from the mapping.
The transfer matrix for right after to right before the kick, the 0.25 phase advance, has the form in physical
phase space (x;x′):

"
x
x′

#
=

"
ax0 +bx′0
− 1

b
x0−ax′0

#
(9)

where a and b are the usual twiss parameters. If we set a = 0, then the matrix becomes:

"
x
x′

#
=

"
bx′0
− 1

b
x0

#
(10)

Combining this equation with eq. 3 lets us write the mapping for the McMillan lens as:

"
x
x′

#
=

264 bx′0
− x0

b
+

m x0
b

n
x2
0

b2 +1

375 (11)

By comparing this mapping to eq. 2 we get the result that the theoretical parameters are given by:

m = bk and n =
b 2

a2 (12)

Lastly, the new constant of motion I can be found by:

I(x;x′) =
x2x′2

a2 +
x2

b 2 + x′2− kxx′ (13)

V. COMPARISON

Using this result, we can now compare the theoretical analysis with physical parameters used in simula-
tions. The Lifetrac tune values here come from the diagonal line in Fig 1. In order to match the theoretical
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results, we simply need to multiply the theory distances by a factor of
√

2 to match the two dimensional
radial distance. Figure 2 shows two different situations comparing the simulation and theory with great
agreement. The theory also gives a maximum tune shift, which in physical parameters is given by:

n(0) =
1

2p
arccos

bk
2

(14)

FIG. 2. A comparison between the theoretical prediction and simulation results from a McMillan electron lens with
different values for k. Both plots use the same parameters as in Fig. 1 with the left again having the lower k value.

However, this formula is only valid for m = |bk| < 2 as arc-cosine is only defined from -1 to 1. If we
look at the weaker lens where k is 0.005382cm−1, we see that bk = 1:615, which is less than two. This
gives a n(0) = 0:100, which agrees with Fig. 2. We hope to build a lens stronger than this, so now we will
look at what happens with a stronger current causing m = |bk| ≥ 2. Figure 3 shows the constant I over the
one dimensional phase space for m < 2 and m > 2. While I for smaller m is always positive, there are two
pockets in the phase space with negative I with the larger m. Unfortunately K(w) is undefined when I is
negative, so the theory cannot predict the tune in this space. Figure 4 shows the tunes for the corresponding
phase space. The white area is where the tunes could not be calculated. As the negative dips are local
extrema, we can find where I(q; p) flattens to determine when this happens. We take the derivative of 4 with
respect to q and p and set both to zero:

dI
dq

= 2np2q + 2q−mp = 0 and
dI
dp

= 2nq2 p + 2p−mq = 0 (15)

Solving the first equation for q yield:

q =
mp

2(np2 + 1)
(16)

which plugs in the second equation to give:

0 = 2np
�

mp
2(np2 + 1)

�2

+ 2p−a
mp

2(np2 + 1)
(17)
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